New Oxidative Tools for the Functionalization of the Cephalostatin North 1 Hemisphere

Jong Seok Lee and Philip L. Fuchs*

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

<u>pfuchs@purdue.edu</u>

Supporting Information

General. All reactions were carried out under nitrogen unless otherwise indicated. Toluene, acetonitrile (CH₃CN), and methylene chloride (CH₂Cl₂) were dried and distilled from calcium hydride (CaH₂). Diethyl ether and tetrahydrofuran (THF) were distilled from benzophenone ketyl. Pyridine and dimethylformamide (DMF) was dried by distillation from calcium hydride (CaH₂). Cyclohexane, acetone, and methanol were spectra-grade. All work-up, wash, recrystalization, and chromatographic solvents were distilled. Sodium sulfate (Na₂SO₄) was anhydrous.

Thin layer chromatography (TLC) was used to monitor the progress of reactions by co-spotting with the starting materials. p-Anisaldehyde (1350 mL absolute ethanol, 50 mL concentrated H_2SO_4 , 37 mL p-anisaldehyde) was utilized as a common TLC visualizing solution.

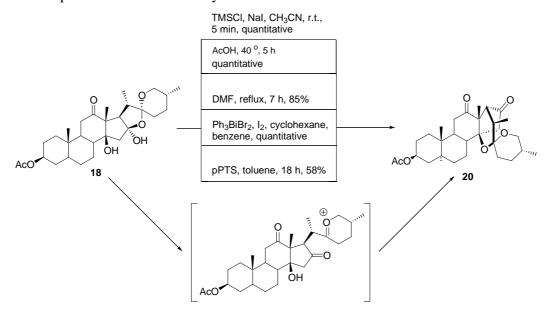
Flash chromatographic purifications were performed using silica gel (230-400 mesh).

¹H NMR and ¹³C NMR data were recorded on General Electric QE-300 (300 MHz) in chloroform-d₁ as a solvent and are described in parts per million (ppm) from the residual chloroform (7.24ppm and 77.0ppm).

Peak multiplicates in ¹H NMR spectra are abbreviated as s (singlet), t (triplet), m (multiplet), br (broad), and bs (broad singlet). Mass spectra were performed by the Purdue University campus wide mass spectrometry facility.

Diol 18. 150 mL of freshly prepared DMDO solution was added to a solution of tertiary alcohol **17** (18.5 g, 0.0379 mol) in CH₂Cl₂ (50 mL) at room temperature. The resulting homogeneous solution was stirred at room temperature until potassium iodide starch paper shows no DMDO left. The reaction mixture was dried over Na₂SO₄ and filtered. The solvent was removed *in vacuo* and another 150 mL of freshly prepared

DMDO solution was added at room temperature.¹ Total 750 mL of DMDO solution (~ 2.2 eq.) was continuously added in the same way. After 7 days, all the starting material was consumed. The resulting reaction mixture was dried over Na₂SO₄ and was evaporated under reduced pressure. Flash column chromatography (EtOAc/n-Hx = 1:2) gave 15.7 g (0.0311 mol, 82%) of diol **18** as a white solid (M.P. 179 – 180 °C, toluene); ¹H NMR (300 MHz, CDCl₃) δ 4.60-4.65 (m, 1H), 3.44-3.60 (m, 3H), 3.21 (d, J = 8.5 Hz, 1H), 2.24-2.44 (m, 3H), 2.02-2.21 (m, 2H), 1.94 (s, 3H), 1.17 (s, 3H), 1.00 (d, J = 6.9 Hz), 0.87 (s, 3H), 0.80 (d, J = 6.1 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 211.9, 170.2, 113.1, 107.2, 86.1, 72.8, 67.6, 61.7, 58.2, 46.4, 46.3, 44.1, 43.4, 39.1, 36.6, 36.2, 35.8, 33.6, 31.6, 29.8, 28.2, 27.8, 27.2, 26.9, 21.1, 16.8, 14.5, 14.2, 11.6; HRMS (EI) for C₂₉H₄₄O₇ [M]⁺ calcd. 504.3087, found 504.3068.


Dienone 19. To a solution of hemiketal **18** (20 mg, 0.0396 mmol) in CH₂Cl₂ (0.5 mL) was added BF₃.OEt₂ (10.5 μ L, 2.1 eq.) at 0 °C. The reaction was stirred for 8 h. The reaction was diluted with EtOAc and washed with sat. NaHCO₃, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude residue was purified by flash chromatography (EtOAc/n-Hexane = 1:2) to give dienone **19** (5 mg, 0.0107 mmol, 27%) along with isomeric spiroketal **20** (8 mg, 0.0160 mmol, 40%); ¹H NMR (300 MHz, CDCl₃) δ 6.27 (s, 1H), 4.65-4.78 (m, 1H), 3.47 (br, 1H), 3.39 (dd, J = 11.7, 5.4 Hz, 1H), 3.10-3.18 (m, 2H), 2.59-2.67 (m, 1H), 2.44-2.58 (m, 3H), 2.28-2.37 (m, 1H), 2.15-2.22 (m, 2H), 2.06 (s, 3H), 1.35 (d, J = 7.5 Hz, 3H), 1.17 (s, 3H), 0.99 (s, 3H), 0.82 (d, J = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 213.4, 211.2, 176.9, 171.3, 170.5, 128.7, 118.4, 72.8, 65.8, 61.9, 58.0, 51.5, 43.6, 43.5, 38.0, 36.3, 36.0, 35.3, 33.6, 31.5, 29.4, 27.4, 27.1,

_

¹ Adam, W.; Bialas, J.; Hadjiarapoglou, L. Chem. Ber. 1991, 124, 124.

26.0, 21.7, 21.3, 16.1, 14.0, 11.6; HRMS (EI) for $C_{29}H_{40}O_5$ [M]⁺ calcd. 468.2876, found 468.2875.

Isomeric Spiroketal 20. To a solution of diol **18** (52.4 mg, 0.1038 mmol) in CH₂Cl₂ (3 mL) was added acetic acid (1 mL) and the reaction was stirred at room temperature for 8 h. The resulting reaction mixture was diluted with EtOAc and washed with sat. NaHCO₃, dried over Na₂SO₄. The solvent was removed under reduced pressure, and the crude product was filtered through a silica gel pad to provide isomeric spiroketal **20** (51.9 mg, 0.1037 mmol, > 99%, M.P. 155-157 °C, toluene); ¹H NMR (300 MHz, CDCl₃) δ 4.61-4.72 (m, 1H), 3.34-3.38 (m, 1H), 3.19-3.26 (m, 1H), 2.44-2.62 (m, 3H), 2.02-2.29 (m, 4H), 2.00 (s, 3H), 1.27 (s, 3H), 0.99 (d, J = 6.9 Hz, 3H), 0.95 (s, 3H), 0.76 (d, J = 5.9, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 212.5, 211.7, 170.5, 97.7, 83.9, 72.9, 66.7, 57.4, 54.5, 47.2, 44.6, 41.6, 39.4, 36.9, 36.3, 36.0, 33.8, 31.5, 29.7, 28.0, 27.6, 27.4, 27.1, 21.3, 17.2, 14.4, 14.1, 13.7, 11.8; HRMS (EI) for C₂₉H₄₂O₆ [M]⁺ calcd. 486.2981, found 486.2972; Isomeric spiroketal **20** can be easily obtained from various reaction conditions.

Vinyl Ether 21. To a solution of diol **18** (3.01 g, 0.006 mol) in toluene (15 mL) was added pyridine (9.65 mL, 20 eq.) at room temperature.² The solution was cooled to – 50 °C, then SOCl₂ (1.74 mL, 4 eq.) was added. The reaction was stirred for 40 min. The resulting reaction mixture was washed with sat. NaHCO₃, dried over Na₂SO₄, and evaporated under reduced pressure. Flash column chromatography with EtOAc/n-Hexane = 1:5 gave vinyl ether **21** (2.16 g, 0.0046 mol, 77%); ¹H NMR (300 MHz, CDCl₃) δ 5.70 (d, J = 1.4 Hz, 1H), 4.59-4.68 (m, 1H), 4.44-4.47 (m, 1H), 3.84-3.89 (m, 1H), 3.39-3.45 (m, 1H), 3.11 (d, J = 6.1 Hz, 1H), 2.66-2.74 (m, 1H), 2.47-2.62 (m, 2H), 2.36 (dd, J = 14.2, 4.0 Hz, 1H), 1.98 (s, 3H), 1.48 (s, 3H), 1.25 (d, J = 7.2 Hz, 3H), 0.94 (s, 3H), 0.87 (d, J = 6.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 210.0, 206.0, 182.5, 170.3, 156.2, 125.5, 94.7, 72.8, 71.3, 62.8, 52.6, 52.3, 43.6, 37.0, 36.9, 36.5, 36.2, 35.4, 33.6, 29.3, 28.9, 27.4, 27.1, 26.9, 21.6, 21.3, 19.8, 17.2, 11.6; HRMS (EI) for C₂₉H₄₀O₅ [M]⁺ calcd. 468.2876, found 468.2854.

Hemiketal 23. To a solution of vinyl ether **21** (2.89 g, 0.0062 mol) in CH_2Cl_2 (20 mL) was added dropwise DMDO (90 mL, ~1.5 eq.) at -50 °C. The reaction was stirred for 30 min. After 30 min., the reaction mixture was evaporated *in vacuo* at room temperature to give hemiketal **23** (3.08 g, 0.0061 mol, > 99%) as a unstable white solid

_

² LaCour, T. G.; Guo, C.; Bhandaru, S.; Boyd, M. R.; Fuchs, P.L. J. Am. Chem. Soc. **1998**, 120, 692.

(decomposed at 80 °C); ¹H NMR (300 MHz, CDCl₃) δ 5.38 (d, J = 1.7 Hz, 1H), 4.59-4.70 (m, 1H), 3.62 (d, J = 8.5 Hz, 1H), 3.49-3.57 (m, 1H), 3.22 (s, 1H), 3.08 (d, J = 7.9 Hz, 1H), 2.41-2.54 (m, 2H), 2.35 (dd, J = 14.9, 4.9 Hz, 1H), 2.17-2.27 (m, 1H), 1.99 (s, 3H), 1.24 (s, 3H), 1.23 (d, J = 6.9 Hz, 3H), 0.91 (s, 3H), 0.82 (d, J = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 210.6, 170.5, 155.6, 121.5, 116.6, 107.9, 72.9, 70.9, 67.4, 62.0, 59.3, 52.5, 43.8, 37.1, 36.2, 36.1, 36.0, 33.9, 33.6, 29.1, 27.7, 27.1, 23.9, 21.3, 21.1, 16.7, 15.7, 11.6; HRMS (ESI) for C₂₉H₄₂O₇ [M]⁺ calcd. 502.2931, found 502.2935.

Sulfide 24. To a solution of hemiketal **23** (24.3 mg, 0.0503 mmol) in CH₂Cl₂ (0.5 mL) was added benzenethiol (7.8 μ L, 1.5 eq.). The solution was cooled to – 40 °C, stirred, and BF₃.OEt₂ (0.3 μ L, 5 mol%) was added to the reaction mixture. After 30 min., the reaction was diluted with EtOAc, quenched with sat. NaHCO₃, dried over Na₂SO₄, and filtered. The filtrate was evaporated under reduced pressure, and separated by flash column chromatography (EtOAc/n-Hexane = 1:2) to provide sulfide **24** (21.2 mg, 0.0356 mmol, 71%); ¹H NMR (300 MHz, CDCl₃) δ 7.45-7.49 (m, 2H), 7.22-7.27 (m, 3H), 5.26 (d, *J* = 0.6 Hz, 1H), 4.62-4.71 (m, 1H), 3.63-3.79 (m, 2H), 3.58 (bs, 1H), 2.07-2.38 (m, 3H), 2.02 (s, 3H), 1.28 (d, *J* = 6.9 Hz, 3H), 1.22 (s, 3H), 0.85 (d, *J* = 6.9 Hz, 3H), 0.84 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 209.6, 170.6, 151.7, 135.7, 133.5, 128.6, 128.1, 123.9, 107.8, 103.6, 73.0, 71.5, 67.6, 62.2, 59.1, 52.2, 44.4, 43.9, 36.8, 36.5, 36.1, 35.9, 33.7, 33.6, 29.2, 27.6, 27.1, 24.1, 21.4, 20.9, 16.9, 15.6, 11.6; HRMS (ESI) for C₃₅H₄₆O₆SNa [M+Na]⁺ calcd. 617.2913, found 617.2914.

Selenide 25. To a solution of hemiketal **23** (59.3 mg, 0.1180 mmol) in CH₂Cl₂ (2 mL) was added benzeneselenol (13.8 μ L, 1.1 eq.) at room temperature. The reaction was cooled to – 30 °C, and BF₃.OEt₂ (1.5 μ L, 10 mol%) was added. After 20 min., the reaction was quenched with sat. NaHCO₃, dried over Na₂CO₃, filtered, and evaporated under reduced pressure. Flash column chromatography (EtOAc/n-Hexane = 1:2) gave selenide **25** (32.6 mg, 0.0508 mmol, 43%); ¹H NMR (300 MHz, CDCl₃) δ 7.57-7.60 (m, 2H), 7.26-7.36 (m, 3H), 5.37 (s, 1H), 4.64-4.73 (m, 1H), 7.80 (d, J = 9.2 Hz, 1H), 3.67-3.74 (m, 2H), 3.59-3.63 (m, 1H), 2.11-2.36 (m, 3H), 2.06 (s, 3H), 1.32 (d, J = 6.9 Hz, 3H), 1.22 (s, 3H), 0.89 (d, J = 6.4 Hz, 3H), 0.85 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 209.8, 170.6, 151.6, 137.9, 129.5, 128.7, 128.3, 124.9, 108.0, 99.7, 73.0, 71.5, 67.7, 62.2, 60.4, 51.6, 44.3, 43.8, 36.7, 36.4, 36.0, 35.7, 33.7, 33.4, 29.2, 27.6, 27.1, 24.0, 21.4, 21.3, 16.9, 15.7, 11.5; HRMS (ESI) for C₃₅H₄₆O₆SeNa [M+Na]⁺ calcd. 665.2357, found 665.2368.

Compound 26. PhSeH (0.15 mL, 2.5 eq.) was added to a solution of lactol **23** (288.0 mg, 0.5729 mmol) in CH₂Cl₂ (6 mL) at -30 °C, then BF₃.OEt₂ (7.3 μ L, 10 mol%) was added. The reaction was stirred with irradiation by a sun lamp (275W RS-M) for 2 h. The reaction mixture was washed with sat. NaHCO₃, dried over Na₂SO₄, and evaporated under reduced pressure. Flash column chromatography (EtOAc/n-Hexane = 1:2) gave compound **26** (230.9 mg, 0.4745 mmol, 83%). Additionally, compound **26** can be obtained from selenide **25**. To a solution of selenide **25** (30.1 mg, 0.0469 mmol) in CH₂Cl₂ (1 mL) was added PhSeH (5.5 μ L, 1.1 eq.) at -30 °C, and a sun lamp was turned

on. After stirred for 2 h, the reaction was quenched with H_2O and EtOAc, dried over Na_2SO_4 , and evaporated under reduced pressure. Flash column chromatography (EtOAc/n-Hexane = 1:2) provided compound **26** (19.9 mg, 0.0408 mmol, 87%) as a white solid (M.P. 245 – 246 °C, EtOAc/n-Hx); ¹H NMR (300 MHz, $CDCl_3$) δ 5.38-5.39 (m, 1H), 4.76 (dd, J = 7.9, 2.1 Hz, 1H), 4.59-4.70 (m, 1H), 3.41-3.60 (m, 3H), 3.20 (t, J = 7.9 Hz, 1H), 2.41-2.57 (m, 2H), 2.32 (dd, J = 14.8, 4.6 Hz, 1H), 2.02-2.17 (m, 1H), 2.00 (s, 3H), 1.28 (s, 3H), 1.18 (d, J = 6.9 Hz, 3H), 0.92 (s, 3H), 0.79 (d, J = 6.6 Hz, 3H); ¹³C NMR (75 MHz, $CDCl_3$) δ 211.4, 170.6, 156.0, 120.3, 106.5, 84.2, 73.1, 71.2, 66.6, 62.5, 53.2, 51.6, 44.0, 43.4, 37.3, 36.5, 36.2, 34.3, 33.7, 29.4, 27.8, 27.2, 24.2, 21.8, 21.4, 16.8, 15.5, 11.7; HRMS (EI) for $C_{29}H_{42}O_6$ [M]⁺ calcd. 486.2981, found 486.2993.

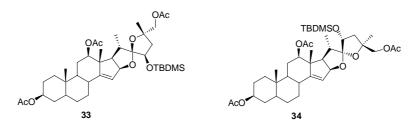
Diol 45. To a mixture of compound **26** (1.03 g, 2.12 mmol) and NaBH₄ (96.3 mg, 1.2 eq.) was added 15 mL of CH₂Cl₂ and 15 mL of MeOH at -78 °C. After stirred for 9 h, the reaction was quenched with H₂O and EtOAc, then washed with sat. NaCl and EtOAc (3 x 80 mL). The combined organic layers were dried over Na₂SO₄, and evaporated under reduced pressure to afford diol as a white solid (M. P. 184 - 185 °C, EtOAc) without silica gel column chromatography (1.02 g, 2.10 mmol, 99% with the C12-α: $-\beta$ = 1:20); ¹H NMR (300 MHz, CDCl₃) δ 5.33 (m, 1H), 4.84 (dd, J = 8.1, 2.1 Hz, 1H), 4.57-4.68 (m, 1H), 3.59 (bs, 1H), 3.41-3.53 (m, 2H), 3.12 (dd, J = 11.1, 4.6 Hz, 1H), 2.39 (t, J = 8.1 Hz, 1H), 2.03-2.14 (m, 1H), 1.98 (s, 3H), 1.16 (d, J = 6.7 Hz, 3H), 0.97 (s, 3H), 0.84 (s, 3H), 0.78 (d, J = 6.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.7, 158.4, 118.8, 106.0, 84.9, 79.4, 73.3, 71.2, 66.6, 57.9, 53.0, 52.3, 44.3, 43.8, 36.6, 36.5, 35.8, 33.9, 33.7, 29.8, 29.5, 28.1, 27.3, 24.2, 21.4, 16.8, 15.7, 14.0, 12.0; HRMS (EI) for C₂₉H₄₄O₆ [M]⁺ calcd. 488.3138, found 488.3134.

Triacetate 46. Ac₂O (59.4 μ L, 3 eq.) was added to the solution of diol **45** (107.3 mg, 0.2196 mmol), DMAP (2.7 mg, 10 mol%), and pyridine (0.2 mL, 12 eq.) in CH₂Cl₂ (2 mL) at 0 °C. The reaction was stirred for 8 h at room temperature, quenched with sat. NaHCO₃ and EtOAc. The resulting solution was washed with sat. NaCl, dried over Na₂SO₄, and filtered. The filtrate was evaporated *in vacuo* to provide triacetate (125.8 mg, 0.2196 mmol, >99%) as a white solid (M. P. 173 – 174 °C, EtOAc); ¹H NMR (300 MHz, CDCl₃) δ 5.35 (s, 1H), 4.82-4.86 (m, 2H), 4.58-4.67 (m, 1H), 4.34 (dd, J = 11.2, 4.4 Hz, 1H), 3.41-3.57 (m, 2H), 2.26 (t, J = 8.0 Hz, 1H), 2.08 (s, 3H), 2.01 (s, 3H), 1.98 (s, 3H), 1.02 (s, 3H), 1.00 (d, J = 7.5 Hz, 3H), 0.84 (s, 3H), 0.76 (d, J = 6.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.5, 170.5, 170.1, 157.2, 119.6, 104.7, 84.9, 80.9, 73.2, 72.4, 66.7, 58.0, 51.9, 51.6, 44.2, 43.3, 36.5, 35.9, 34.0, 33.9, 33.7, 29.4, 28.0, 27.2, 26.5, 24.6, 21.3, 21.2, 21.2, 16.6, 15.3, 14.9, 11.9; HRMS (EI) for C₃₃H₄₈O₈ [M]⁺ calcd. 573.3427, found 573.3432.

Compound 28. To a solution of sulfide **24** (27.6 mg, 0.0464 mmol) in CH₂Cl₂ (1 mL) was added *m*-CPBA (11.4 mg, 1.0 eq.) at room temperature. After 10 minutes, sat. NaHCO₃ was added and the reaction was washed with sat. NaCl, extracted with EtOAc (3 x 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Flash column chromatography (EtOAc/*n*-Hexane = 1:2) gave compound **28** (13.6 mg, 0.0281 mmol, 60%) as a white solid (M.P. 125 – 126 °C, EtOAc); ¹H NMR (300 MHz, CDCl₃) δ 5.70 (d, J = 1.5 Hz, 1H), 4.81 (d, J = 3.4 Hz, 1H), 4.60-4.71 (m, 1H), 4.0 (ddd, J = 11.4, 4.5, 2.3 Hz, 1H), 3.38 (t, J = 11.1, 1H), 3.13 (d, J = 9.0, 1H), 2.74-2.80 (m, 1H), 2.52-2.64 (m, 3H), 2.23-2.43 (m, 2H), 2.02-2.14 (m,

2H), 2.00 (s, 3H), 1.54 (s, 3H), 0.96 (s, 3H), 0.93 (d, J = 6.9 Hz, 3H), 0.92 (d, J = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 210.0, 208.7, 206.8, 183.7, 170.5, 125.3, 83.3, 72.8, 63.2, 52.5, 51.8, 47.1, 43.6, 37.4, 36.6, 36.2, 35.5, 33.6, 33.2, 31.0, 29.3, 27.5, 27.1, 22.4, 21.3, 17.2, 14.6, 11.6; HRMS (ESI) for $C_{29}H_{40}O_6Na$ [M+Na]⁺ calcd. 507.2723, found 507.2723.

Alcohol 29. To a solution of triacetate **46** (35.0 mg, 0.0611 mmol) and Et₃SiH (87.8 μ L, 9 eq.) was added BF₃.OEt₂ (69.7 μ L, 9 eq.) at 0 °C. The reaction was stirred for 36 h at room temperature, quenched with sat. NaHCO₃/EtOAc, washed with sat. NaCl, and dried over Na₂SO₄. Solvent was removed *in vacuo* and flash silica gel column chromatography (EtOAc/ *n*-Hexane = 1:1) provided alcohol **29** (33.7 mg, 0.0586 mmol, 96%) as a colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 5.34 (s, 1H), 5.04-5.10 (m, 1H), 4.72 (dd, J = 7.9, 1.5 Hz, 1H), 4.56-4.67 (m, 1H), 4.38 (dd, J = 11.3, 4.4 Hz, 1H), 3.40-3.43 (m, 3H), 2.01 (s, 3H), 2.00 (s, 3H), 1.96 (s, 3H), 1.03 (s, 3H), 0.97 (d, J = 6.4 Hz, 3H), 0.87 (d, J = 6.7 Hz, 3H), 0.82 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.7, 170.5, 157.3, 119.7, 88.0, 86.5, 81.0, 73.2, 72.3, 68.3, 59.9, 51.8, 51.7, 44.1, 37.5, 36.5, 35.8, 34.0, 33.7, 33.6, 32.1, 29.4, 27.9, 27.2, 26.5, 21.3, 21.2, 21.2, 18.0, 16.3, 16.0, 11.9; HRMS (ESI) for C₃₃H₅₀O₈ [M]⁺ calcd. 575.3584, found 575.3586.


Olefin 30. To a solution of alcohol **29** (776.7 mg, 1.3561 mmol), Ph_3P (889.3 mg, 2.5 eq.) and imidazole (468.4 mg, 5 eq.) in Et_2O (20 mL) and CH_3CN (2 mL) was added

I₂ (1.03 g, 3 eq.) at 0 °C. The reaction was stirred at room temperature for 2.5 h. sat. Na₂S₂O₃ and EtOAc were used to quench the reaction. The resulting colorless solution was washed with sat. NaCl, dried over Na₂SO₄, and filtered. The filtrate was evaporated under reduced pressure. The resulting colorless oil was further treated with DBU (0.4 mL, 2 eq.) in CH₃CN (20 mL) at reflux for 3 h. The reaction was evaporated under reduced pressure to give yellow oil. Flash column chromatography (EtOAc/ *n*-Hexane = 1:6) provided olefin **30** (626.6 mg, 1.1256 mmol, 83% in 2 steps) as a colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 5.38 (s, 1H), 5.14 (dd, J = 11.2, 6.5 Hz, 1H), 4.73-4.77 (m, 2H), 4.68 (s, 1H), 4.60-4.66 (m, 1H), 4.40 (dd, J = 11.4, 4.6 Hz, 1H), 3.43 (dd, J = 8.8, 4.5 Hz, 1H), 2.30 (d, J = 6.4 Hz, 1H), 2.02 (s, 3H), 1.99 (s, 3H), 1.98 (s, 3H), 1.70 (s, 3H), 1.05 (s, 3H), 1.00 (d, J = 6.4 Hz, 3H), 0.84 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.5, 170.4, 157.2, 141.7, 119.8, 113.1, 87.7, 86.5, 81.0, 73.2, 72.2, 59.9, 51.8, 51.7, 44.1, 38.8, 37.6, 36.5, 35.8, 34.0, 33.7, 29.5, 28.0, 27.2, 26.5, 22.4, 21.3, 21.2, 21.1, 18.0, 16.0, 11.9; HRMS (ESI) for C₃₃H₄₈O₇ [M]⁺ calcd. 557.3478, found 557.3457.

Acetate 31. To a stirred solution of (DHQ)₂PHAL (33.6 mg, 0.1 eq.), K₃Fe(CN)₆ (425.6 mg, 3 eq.), K₂CO₃ (178.7 mg, 3 eq.), and K₂OsO₄.2H₂O (2.2 mg, 0.014 eq.) in *t*-BuOH (2.5 mL) and H₂O (2.5 mL) was added a solution of olefin **30** (239.9 mg, 0.4309 mmol) in *t*-BuOH at 0 °C. The reaction was stirred at 0 °C for 17 h. After 17 h, Na₂SO₃ was added and stirred for additional 1 h at room temperature. The product mixture was extracted with CH₂Cl₂ and H₂O three times. The combined organic layers were dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The resulting colorless oil was filtered through a silica gel pad (3 cm), and the solvent was removed *in vacuo*. The filtrate was further treated with K₂CO₃ (300 mg) in THF (2 mL) and H₂O (2 mL) at room temperature for 3 h. The reaction was extracted with EtOAc, dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Flash column chromatography (EtOAc/ *n*-

Hexane = 1:1) gave acetate **31** (176.4 mg, 0.3091 mmol, 72% in 2 steps, C25-*S*:-*R* = 7.8:1 based on the ¹HNMR integration of C22 of compound **32**) as a colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 5.34 (s, 1H), 4.77-4.79 (m, 1H), 4.61-4.68 (m, 1H), 4.40 (dd, J = 11.4, 4.5 Hz, 1H), 4.03-4.09 (m, 2H), 3.61 (s, 1H), 3.32 (dd, J = 7.9, 3.7 Hz, 1H), 2.80 (d, J = 2.0 Hz, 1H), 2.12-2.20 (m, 2H), 2.05 (s, 3H), 2.04 (s, 3H), 1.99 (s, 3H), 1.23 (s, 3H), 1.07 (s, 3H), 1.03 (d, J = 6.1 Hz, 3H), 0.85 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.8, 170.6, 157.8, 119.5, 89.7, 86.4, 81.1, 73.2, 71.5, 69.6, 60.7, 52.1, 51.7, 44.2, 40.0, 36.5, 35.9, 35.1, 34.1, 33.7, 29.7, 29.5, 28.0, 27.2, 26.6, 26.4, 21.4, 21.2, 20.9, 19.1, 16.2, 11.9; HRMS (ESI) for C₃₃H₅₀O₉ [M]⁺ calcd. 590.3455, found 590.3449.

Compound 32. TBDMSOTf (13.2 μ L, 1.2 eq.) was added to a solution of acetate **31** (28.3 mg, 0.0479 mmol) and TEA (33.4 μ L, 5.0 eq.) in CH₂Cl₂ (1 mL) at 0 °C. After stirred for 4 h at 0 °C, the reaction was quenched by sat. NaHCO₃, extracted with EtOAc, washed with sat. NaCl, dried over Na₂SO₄, and evaporated under reduced pressure. Flash column chromatography (EtOAc/ *n*-Hexane = 1:8) provided compound **32** (26.3 mg, 0.0373 mmol, 78%); ¹H NMR (300 MHz, CDCl₃) δ 5.35-5.37 (m, 1H), 4.73 (dd, J = 7.8, 2.1 Hz, 1H), 4.58-4.69 (m, 2H), 4.41 (dd, J = 11.4, 4.6 Hz, 1H), 3.86-4.02 (m, 3H), 3.39 (d, J = 8.6, 5.4 Hz, 1H), 2.05-2.12 (m, 1H), 2.04 (s, 3H), 2.02 (s, 3H), 1.97 (s, 3H), 1.18 (s, 3H), 1.05 (s, 3H), 1.01 (d, J = 6.7 Hz, 3H), 0.86 (s, 9H), 0.83 (s, 3H), 0.07 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 170.8, 170.5, 170.4, 157.8, 119.4, 90.6, 86.5, 80.9, 73.2, 71.5, 71.3, 69.9, 60.1, 51.7, 51.6, 44.1, 43.0, 38.2, 36.5, 35.8, 34.1, 33.7, 29.6, 29.4, 27.9, 27.2, 26.5, 25.8, 25.7, 25.3, 21.3, 21.1, 20.9, 18.7, 17.9, 16.2, 11.9, -4.0, -4.4; HRMS (ESI) for C₃₉H₆₄O₉SiNa [M+Na]⁺ calcd. 727.4217, found 727.4209.

Compound 33, compound 34. A solution of compound 32 (26.5 mg, 0.0376 mmol), $PhI(OAc)_2$ (31.5 mg, 2.6 eq.), and I_2 (21.0 mg, 2.2 eq.) in cyclohexane (2 mL) was placed in a Rayonet photoreactor (Model RPR-100, 300 nm). After 2 h of irradiation, the reaction was quenched with aq. $Na_2S_2O_3$ and Et_2O , dried over Na_2SO_4 , and evaporated under reduced pressure. Flash column chromatography (EtOAc/ n-Hexane = 1:5) gave compound 33 (16.9 mg, 0.0240 mmol, 75% borsm), 34 (1.4 mg, 0.0020 mmol, 6% borsm), along with unreacted 32 (3.9 mg, 15% recovered).

Compound 33. ¹H NMR (300 MHz, CDCl₃) δ 5.34, 4.91-4.94 (m, 1H), 4.59-4.69 (m, 1H), 4.37 (dd, J = 11.3, 4.6 Hz, 1H), 4.19 (d, J = 4.3 Hz, 1H), 3.99-4.09 (m, 2H), 2.20-2.29 (m, 1H), 2.05 (s, 3H), 2.02 (s, 3H), 1.98 (s, 3H), 1.31 (s, 3H), 1.04 (s, 3H), 0.83-0.87 (m, 15H), 0.03 (s, 3H), 0.02 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.8, 170.5, 170.4, 157.4, 119.8, 118.4, 84.8, 81.9, 81.0, 79.1, 73.2, 70.3, 57.7, 51.8, 51.6, 44.2, 42.9, 39.3, 36.5, 35.9, 34.1, 33.7, 29.7, 29.5, 28.0, 27.2, 26.5, 26.0, 25.7, 21.4, 21.2, 20.9, 17.9, 15.8, 15.7, 11.9, -4.8, -4.9; HRMS (ESI) for C₃₉H₆₂O₉SiNa [M+Na]⁺ calcd. 725.4061, found 725.4052.

Compound 34. ¹H NMR (300 MHz, CDCl₃) δ 5.37 (s, 1H), 4.99-5.01 (m, 1H), 4.60-4.68 (m, 1H), 4.33 (dd, J = 11.2, 4.6 Hz, 1H), 4.17-4.23 (m, 1H), 3.95-4.15 (m 1H), 2.15-2.31 (m, 2H), 2.05 (s, 3H), 2.01 (s, 3H), 1.92 (s, 3H), 1.08 (s, 3H), 1.04 (s, 3H), 1.01 (d, J = 4.1 Hz, 1H), 0.83 (s, 9H), 0.82 (d, J = 3.0 Hz, 3H), 0.04 (s, 3H), 0.03 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.9, 170.6, 170.3, 153.4, 122.2, 115.5, 85.0, 80.0, 78.9, 73.3, 71.8, 70.9, 54.4, 52.4, 51.7, 44.3, 39.9, 39.5, 36.4, 36.0, 33.8, 33.7, 29.7, 29.3, 28.1, 27.3, 26.4, 25.7, 24.8, 21.4, 21.1, 21.0, 17.8, 14.8, 13.6, 11.9, -4.0, -5.0; HRMS (ESI) for $C_{39}H_{62}O_{9}SiNa [M+Na]^{+} calcd. 725.4061$, found 725.4069.

Survey of methods for axial C-23 alcohol-directed oxygenation of unactivated C-25 position.

With C-23 axial OH group at our hand, it was expected to have several chances to introduce the hydroxy group at C-25 in a desired stereochemistry without ring opening.

a. 1,4-Hydrogen abstraction

Alkoxy radical is one of the strongest hydrogen abstractors. Several attempts using, Suarez condition,³ Pb(OAc)₄,⁴ Selectfluor^{TM5} with tungsten lamp were not successful.

In the cases of Pb(OAc)₄, I₂, tungsten lamp, and SelectfluorTM, MeCN, reflux, the S.M. decomposed

b. 1,5-Hydrogen abstraction

Carbonyl radical from selenoester might be another acceptable choice for our hydrogen abstraction attempts. Selenoester can be obtained from triphosgen followed by benzene selenol.⁶

⁵ R. Eric Banks, Nicolas J. Lawrence, Mohammed K. Besheesh, Allan L. Popplewell, Robin G. Pritchard *Chem. Commun.* **1996**, 1629.

³ Carmen Betancor, Raimundo Freire, Ines Perez-Martin, Thierry Prange, Ernesto Suarez *Org. Lett.* **2002**, *4*, 1295

⁴ Heusler, L., Kalvoda, I. Angew. Chem. Int. Ed. 1964, 3, 525.

⁶ Dale L. Boger, Robert J. Mathvin K. J. Org. Chem. **1992**, 57, 4696.

Treatments with various radical initiators with a uv lamp didn't give any traces of desired product but gave selenoester itself or decomposed material.

Instead of selenoester, treatment of bromodifluoromethylether compound 37 gave only starting compound.

c. 1,6-Hydrogen abstraction

Hofmann-Loeffler-Freytag type reaction has many examples which successfully functionalized a C-H bond in a cyclic compound. However, its application on our compound was not successful.

⁷ Patrick F. Dicks, Stephen A. Glover, andre Goosen, Cedric W. McCleland *Tetrahedron*, **1987**, *43*, 923.

Bromomethyldimethylsilyl group is assumed to have the ability to abstract hydrogen also. Using Bu₃SnH, AIBN provided only TMS protected compound, whereas from ditin reagent, starting compound was recovered.

Using Bu₃SnH, AIBN provided only TMS protected compound, whereas from ditin reagent, starting compound was recovered.

d. C-H insertions using nitrene chemistry

Although none of our attempts using radical chemistry were successful, activation at C-25 using nitrene chemistry was a possibility.

As our model study, neomenthol, which has a sulfamoyl group, was successfully transformed to the desired product.⁸ However, application on our compound provided no

_

⁸ (a) Christine G. Espino, Paul M. Wehn, Jessica Chow, J. Du Bois, *J. Am. Chem. Soc.* **2001**, *123*, 6935. (b) Christine G. Espino, J. Du Bois, *Angew. Chem. Int. Ed.* **2001**, *40*, 598. (c) Paul M. Wehn, J. Du Bois, *J. Am. Chem. Soc.* **2002**, 124, 12950. (d) J. J. Fleming, K. W. Fiori, J. Du Bois, *J. Am. Chem. Soc.* **2003**, 125, 2028.

evidence of desired product. From the carbamate **45**, only C-23 ketone compound was separated in only 7% yield.

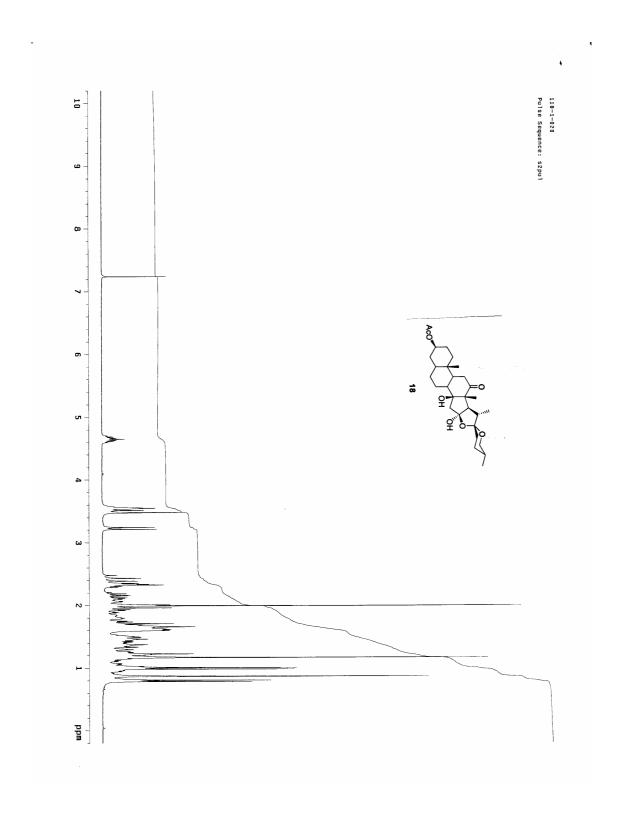
Further investigation of an alternative route toward dienyl ether 27

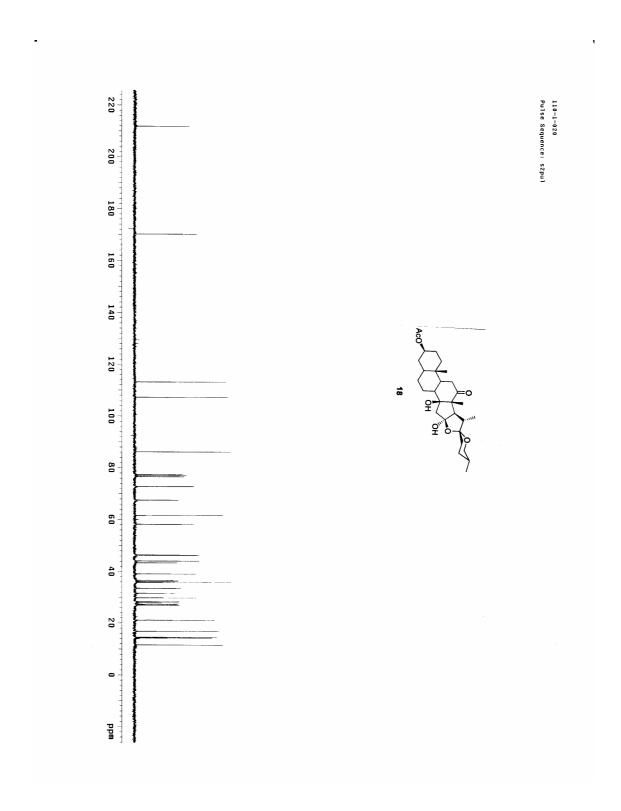
As an alternative toward dienyl ether **27**, we investigated another possibility on conversion of 2-bromophenyl sulfide **47**⁹ to dienyl ether **27** via intramolecular hydrogen abstraction. However, 2-bromophenyl sulfide **47** was decomposed under the condition with 1.5 eq. BuSnH, 0.3 eq. AIBN in benzene under reflux.

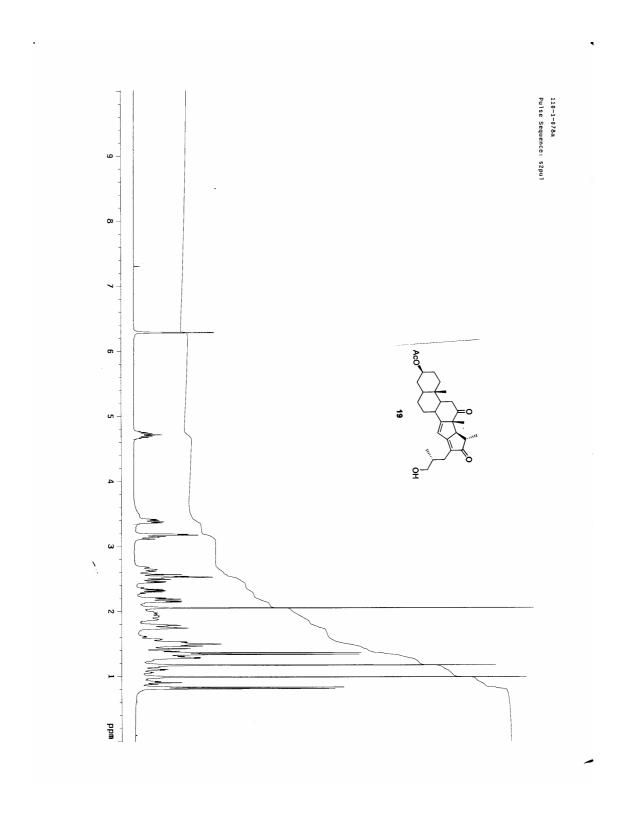
acyl protection using 1.2 eq. Ac₂O, 5 eq. pyridine in CH₂Cl₂.

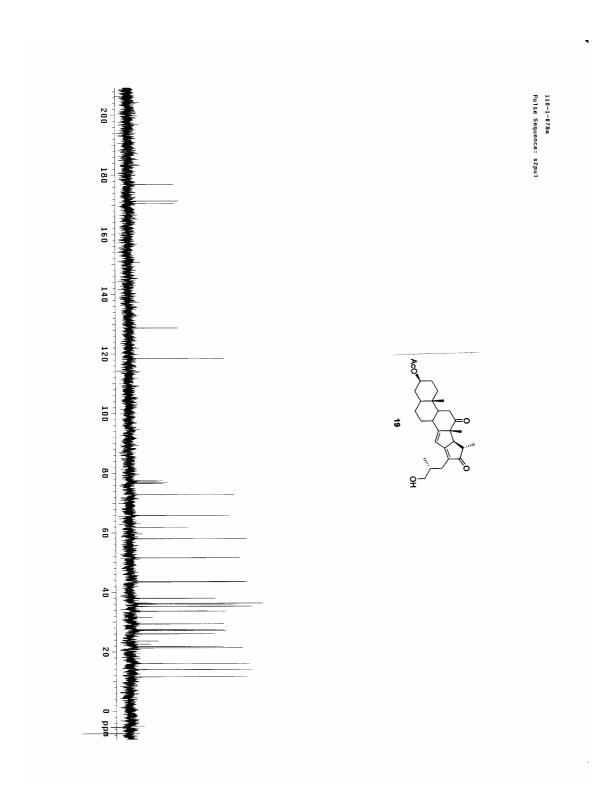
⁹ 2-Bromophenyl sulfide **47** can be easily obtained from the same reaction condition as sulfide **24**, selenide **25** (10 mol% BF₃.OEt₂, 1.5 eq. 2-bromobenzenethiol in CH₂Cl₂ at – 40 °C for 20 min., 32%), followed by

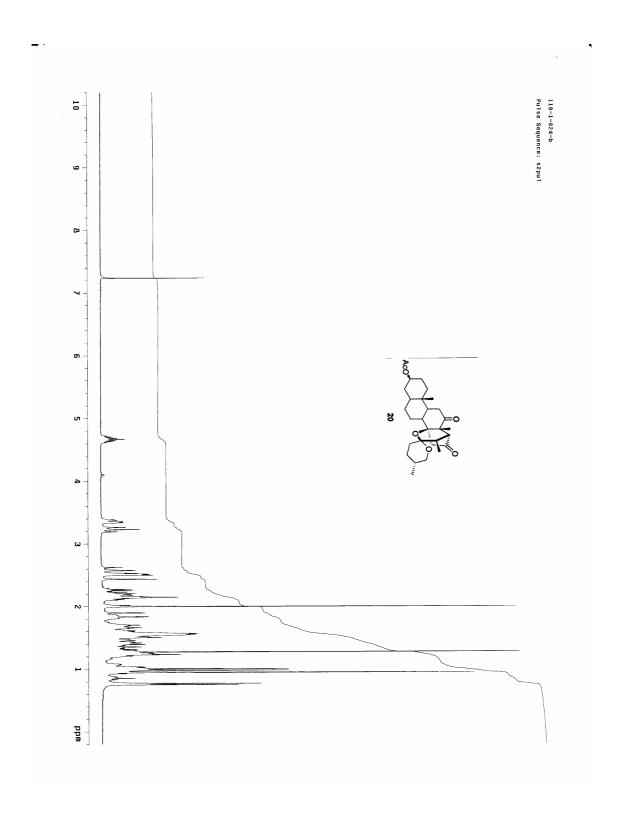
Table 1. ¹³CNMR peak assignment table for key intermediates.

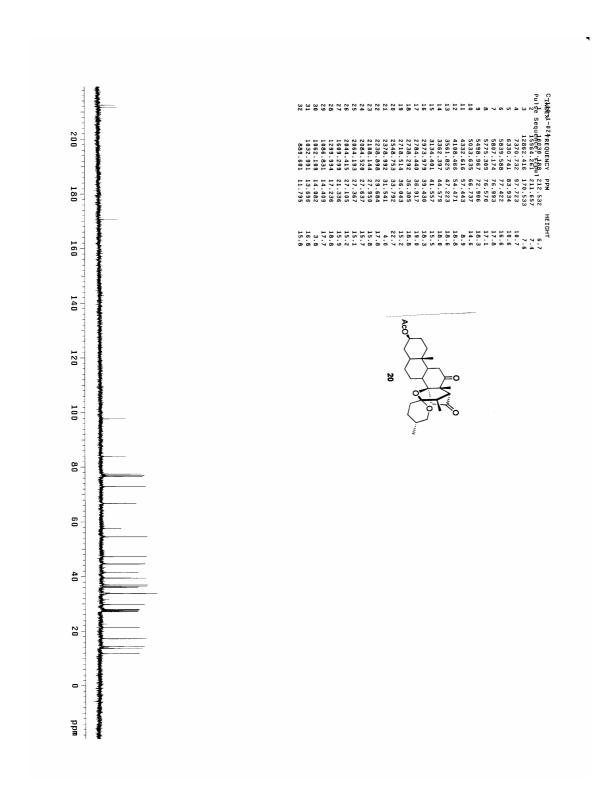

compd.	18	20	21	23	24	25	26	29	30	31	32	33	34
1	36.2	36.3	36.2	36.2	36.1	36.0	36.2	35.8	35.8	35.9	35.8	35.9	36.0
2	26.9	27.1	27.1	27.1	27.1	27.1	27.2	27.2	27.2	27.2	27.2	27.2	27.3
3	72.8	72.9	72.8	72.9	73.0	73.0	73.1	73.2	73.2	73.2	73.2	73.2	73.3
4	33.6	33.8	33.6	33.6	33.6	33.4	33.7	33.7	33.7	33.7	33.7	33.7	33.7
5	44.1	44.6	43.6	43.8	43.9	43.8	44.0	44.1	44.1	44.2	44.1	44.2	44.3
6	27.8	27.6	27.4	27.7	27.6	27.6	27.8	27.9	28.0	28.0	27.9	28.0	28.1
7	27.2	27.4	28.9	29.1	29.2	29.2	29.4	29.4	29.5	29.5	29.4	29.7	29.7
8	39.1	39.4	37.0	37.1	33.7	33.7	34.3	34.0	34.0	34.1	34.1	34.1	33.8
9	46.4	47.2	52.3	52.5	52.2	51.6	53.2	51.8	51.8	51.7	51.6	51.6	51.7
10	35.8	36.0	36.5	36.1	36.5	36.4	36.5	36.5	36.5	36.5	36.5	36.5	36.4
11	36.6	36.9	36.9	37.1	36.8	36.7	37.3	26.5	26.5	26.6	26.5	26.5	26.4
12	211.9	212.5	206.0	210.6	209.6	209.8	211.4	81.0	81.0	81.1	80.9	81.0	78.9
13	61.7	57.4	62.8	62.0	62.2	62.2	62.5	59.9	59.9	60.7	60.1	57.7	54.4
14	86.1	83.9	182.5	155.6	151.7	151.6	156.0	157.3	157.2	157.8	157.8	157.4	153.4
15	43.4	41.6	125.5	121.5	123.9	124.9	120.3	119.7	119.8	119.5	119.4	119.8	122.2
16	113.1	211.7	210.0	116.6	103.6	99.7	84.2	86.5	86.5	86.4	86.5	84.8	85.0
17	58.2	54.5	52.6	59.3	59.1	60.4	51.6	51.7	51.7	52.1	51.7	51.8	52.4
18	14.5	14.4	19.8	21.1	20.9	21.3	21.8	16.0	16.0	16.2	16.2	15.7	13.6
19	11.6	11.8	11.6	11.6	11.6	11.5	11.7	11.9	11.9	11.9	11.9	11.9	11.9
20	46.3	47.2	35.4	43.8	44.4	44.3	43.4	37.5	37.6	40.0	38.2	39.3	39.9
21	14.2	13.7	21.3	15.7	15.6	15.7	15.5	16.3	18.0	19.1	18.7	15.8	14.8
22	107.2	97.7	156.2	107.9	107.8	108.0	106.5	88.0	87.7	89.7	90.6	118.4	115.5
23	31.6	33.8	94.7	70.9	71.5	71.5	71.2	72.3	72.2	69.6	71.5	79.1	71.8
24	28.2	28.0	29.3	36.0	35.9	35.7	36.2	33.6	38.8	35.1	43.0	42.9	39.5
25	29.8	29.7	26.9	33.9	24.1	24.0	24.2	32.1	141.7	69.6	71.3	81.9	80.0
26	67.6	66.7	71.3	67.4	67.6	67.7	66.6	68.3	113.1	71.5	69.9	70.3	70.9
27	16.8	17.2	17.2	16.7	16.9	16.9	16.8	18.0	22.4	26.4	25.3	26.0	24.8

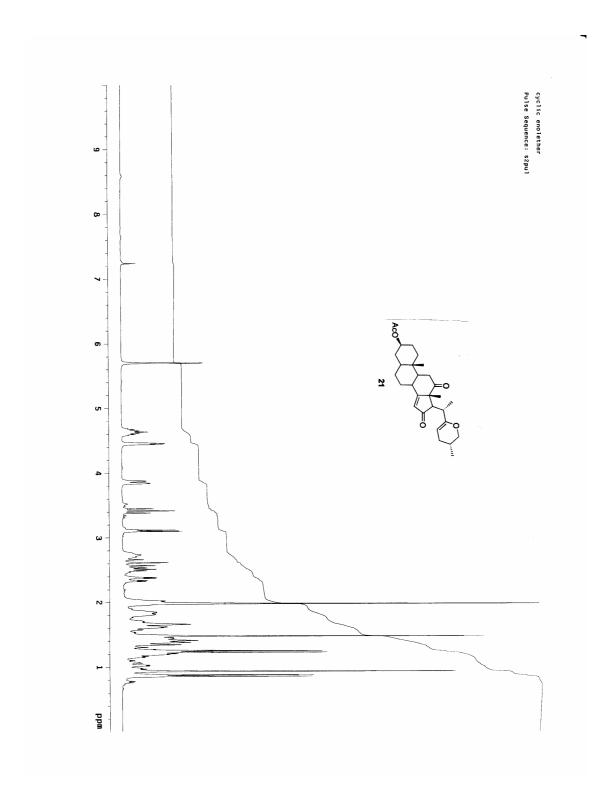

Table 2. Characterization Check List

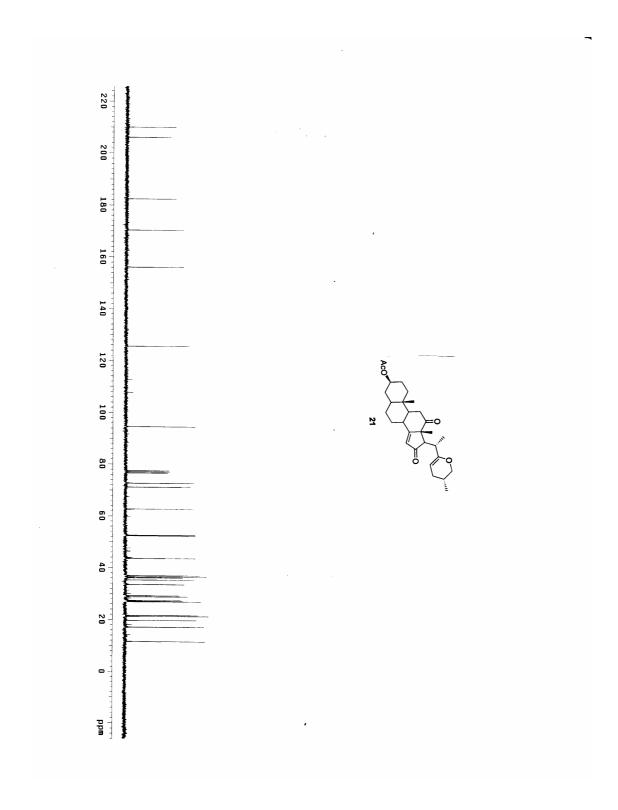

compound	¹ HNMR	¹³ CNMR	LRMS	HRMS	others
AcO OH OH	О	О	О	О	X-ray M.P. 179 – 180 °C (toluene)
AcO OH	О	О	О	О	
Aco 20	О	O	О	О	X-ray M.P. 155 – 157 °C (toluene)
AcO 21	О	O	О	О	
AcO 23	О	O	О	О	
O OH OH SPh	О	0	О	О	
AcO 25	О	0	0	О	

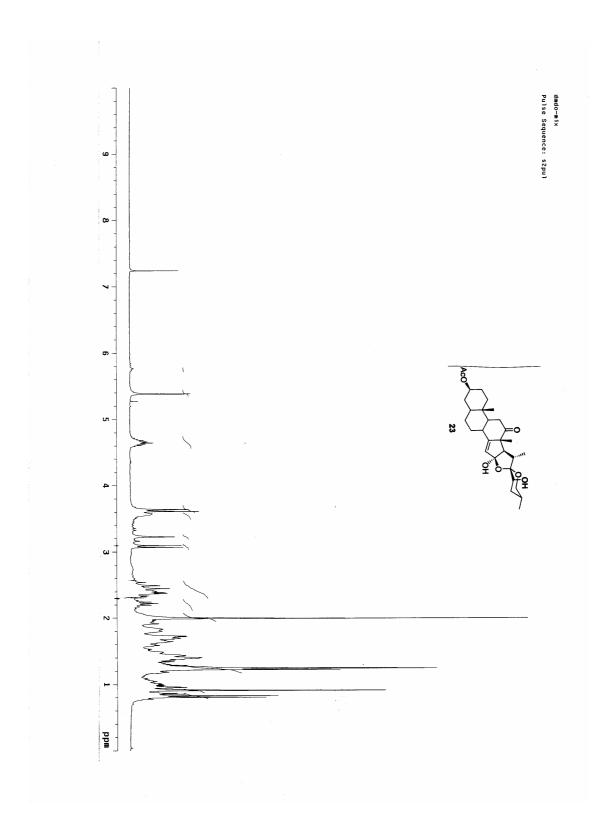

AcO 26	O	О	O	O	X-ray M.P. 245 – 246 °C (EtOAc/n-Hx)
Aco 28	0	O	O	O	M.P. 225 – 226 °C (EtOAc)
OAC OH	0	0	O	O	
OAC QAC ACO 30	0	0	O	0	
OAC HOW OH	0	0	O	O	
OAC HOW OTBS	0	0	О	O	
OAC OTBDMS ACO 33	0	0	O	O	

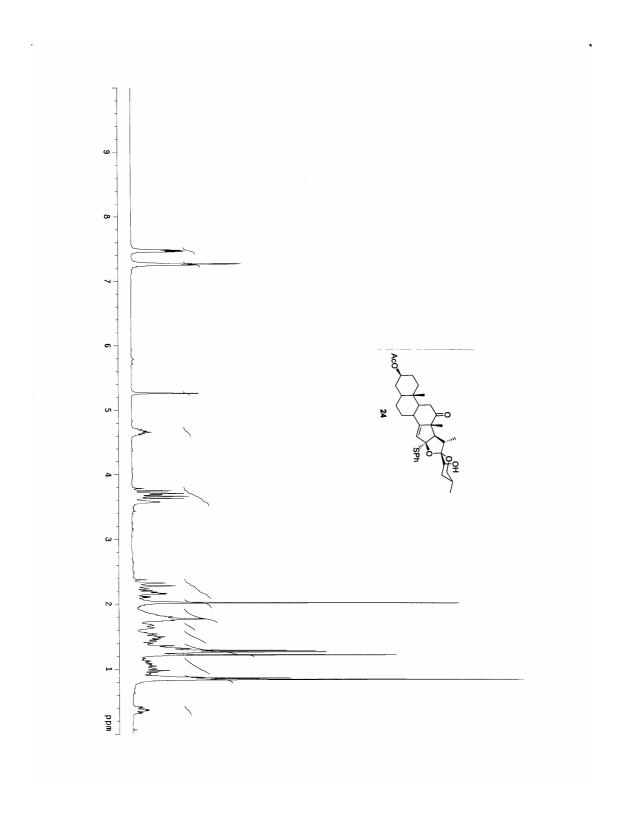

TBDMSQ OAC OAC OAC	О	О	О	О		
-----------------------------	---	---	---	---	--	--

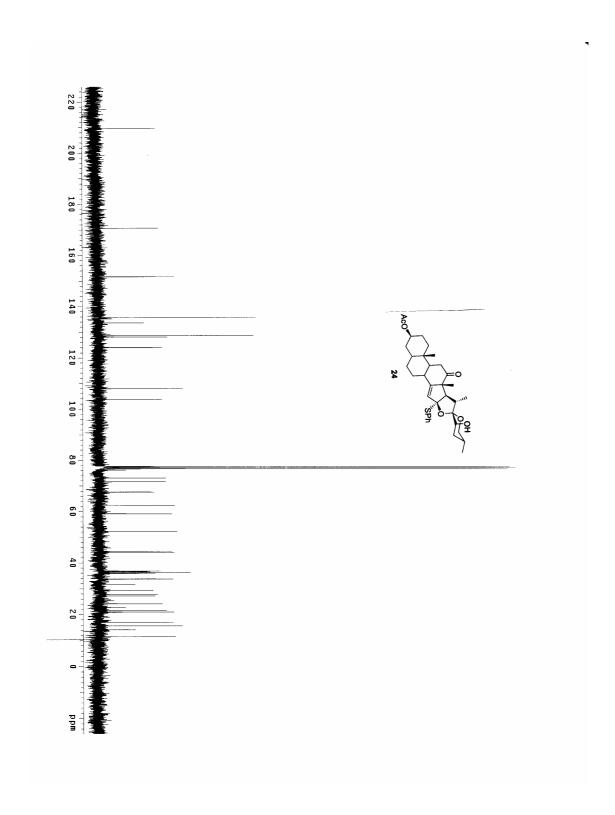


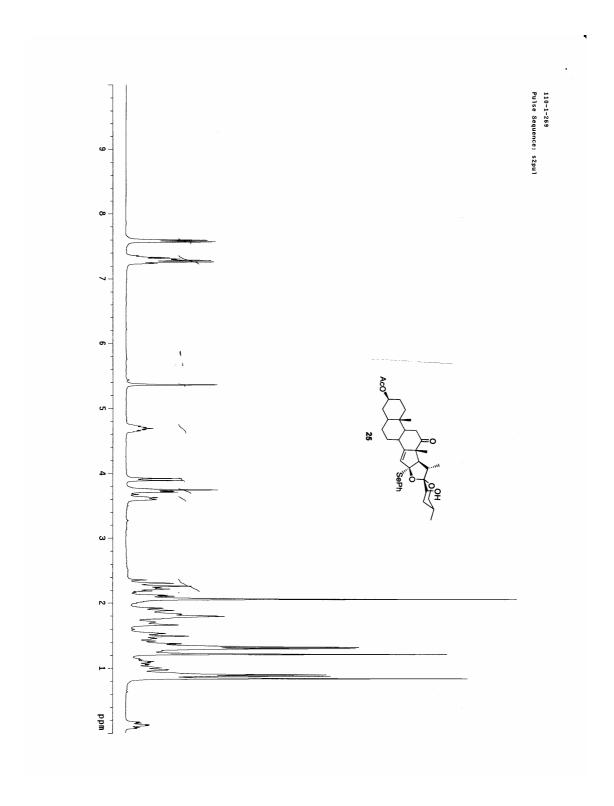


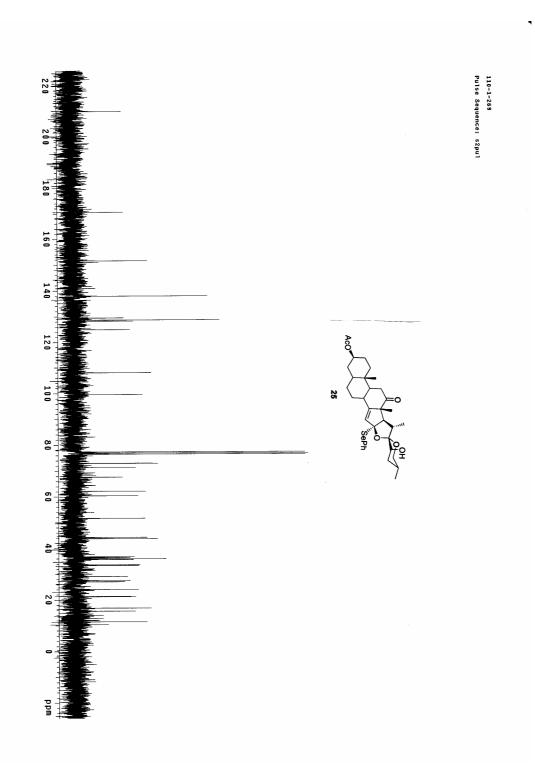


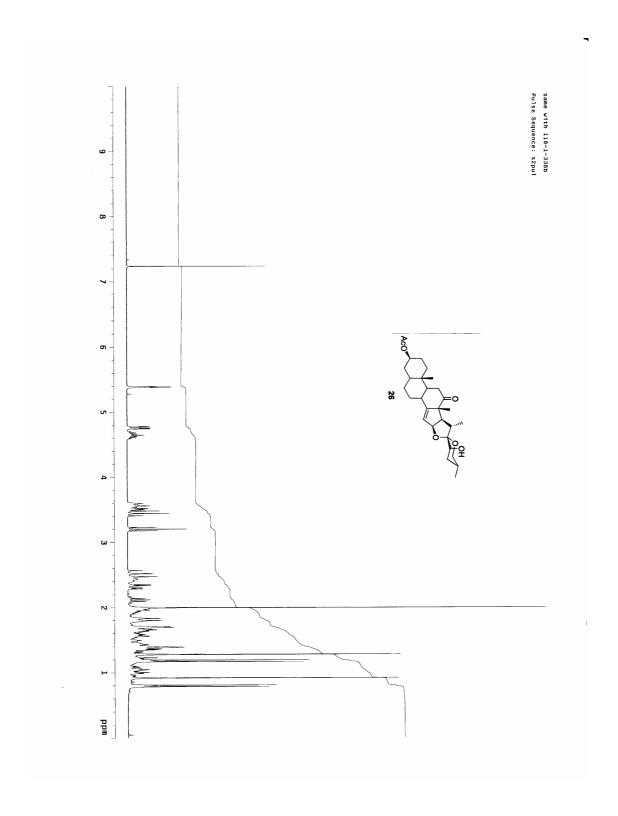


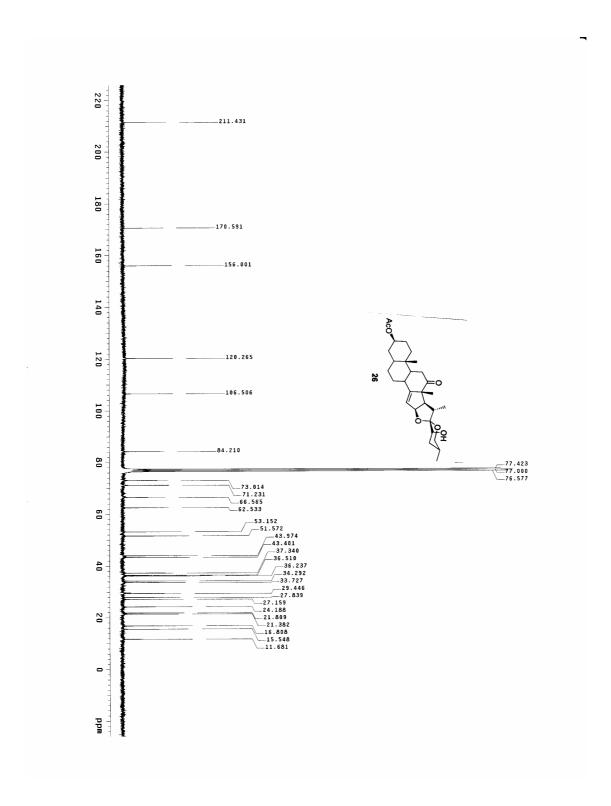


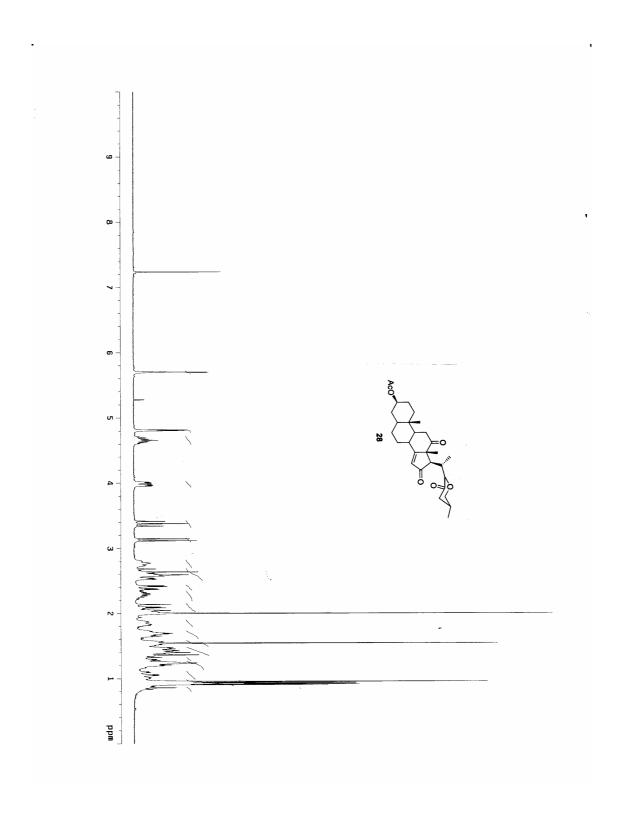


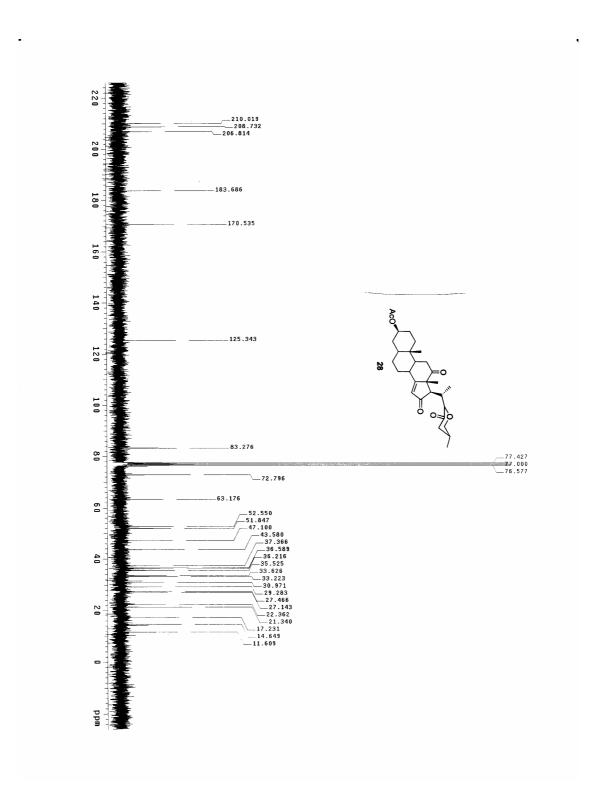


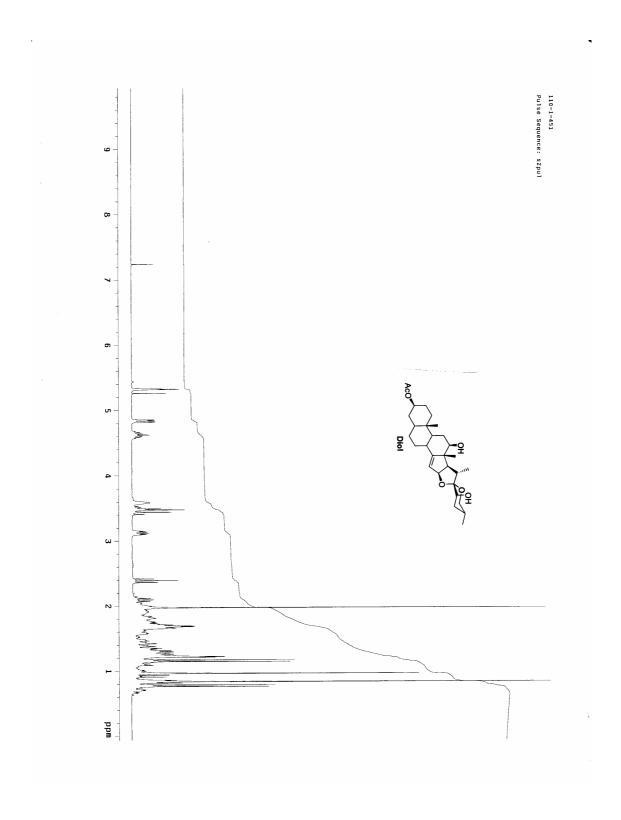


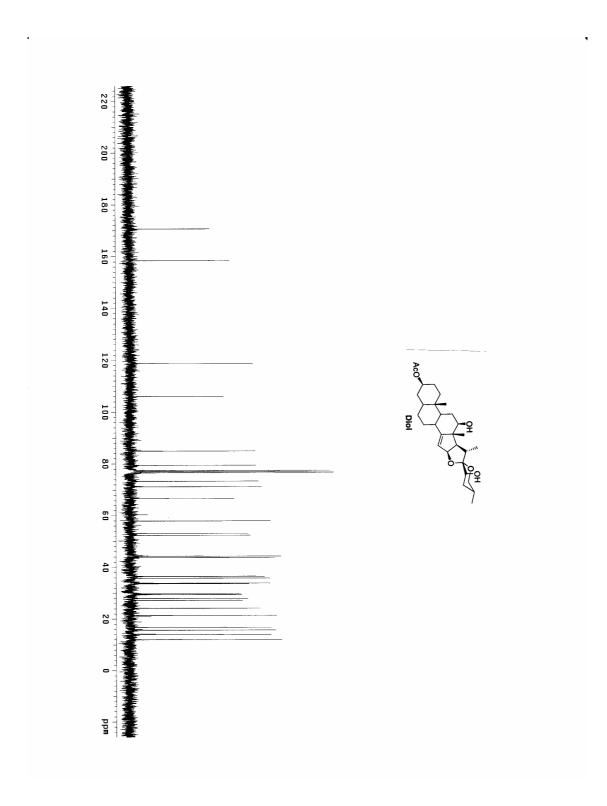


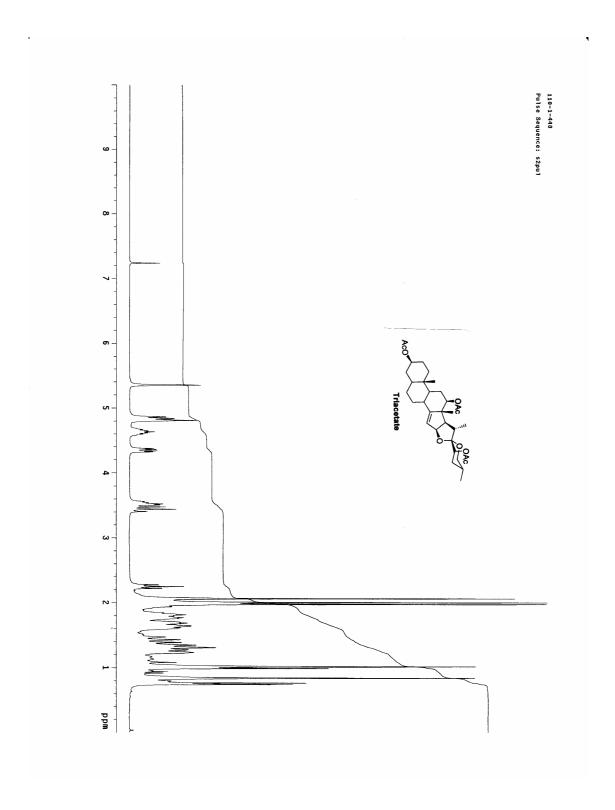


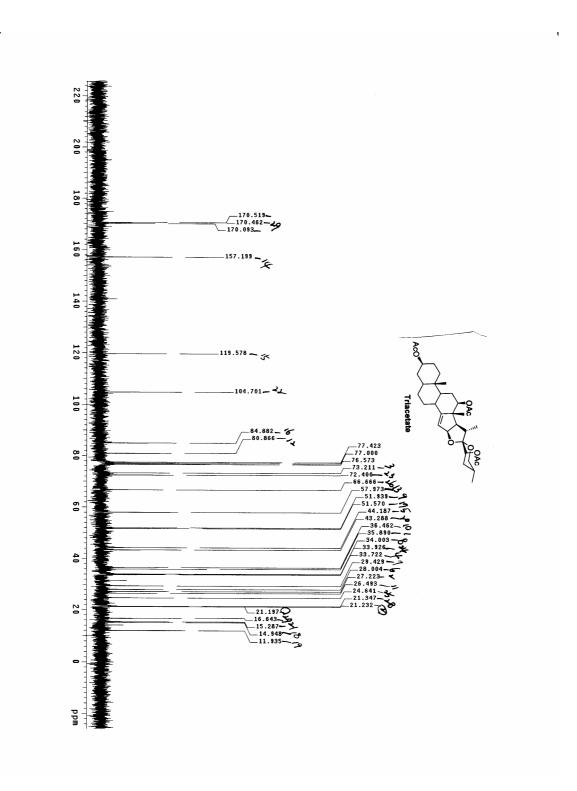


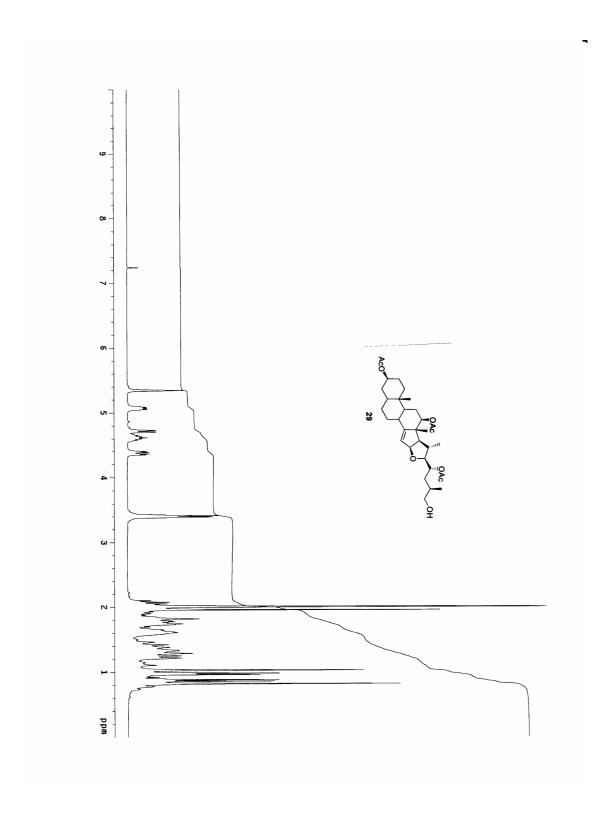


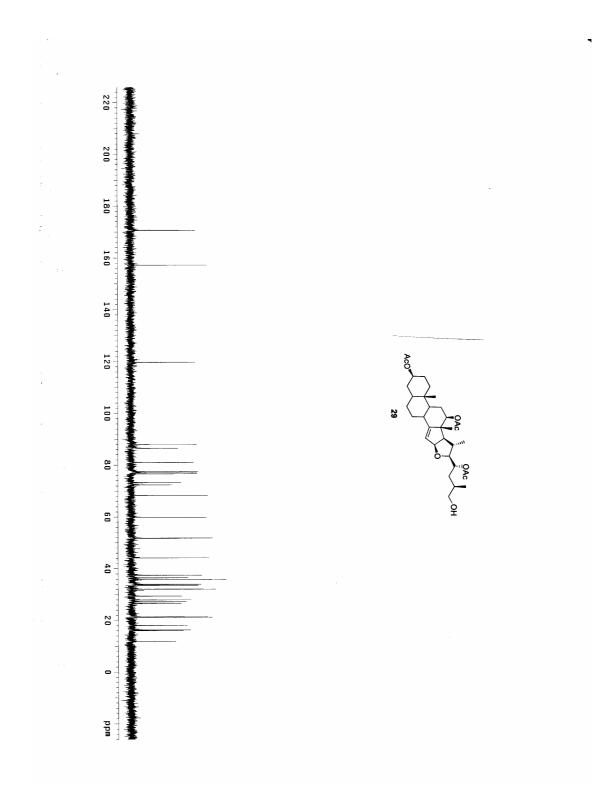


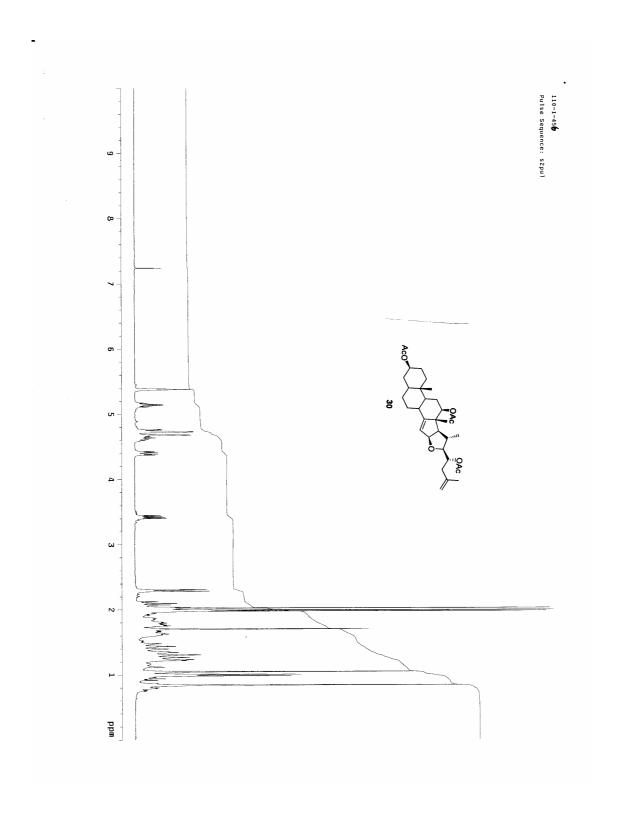


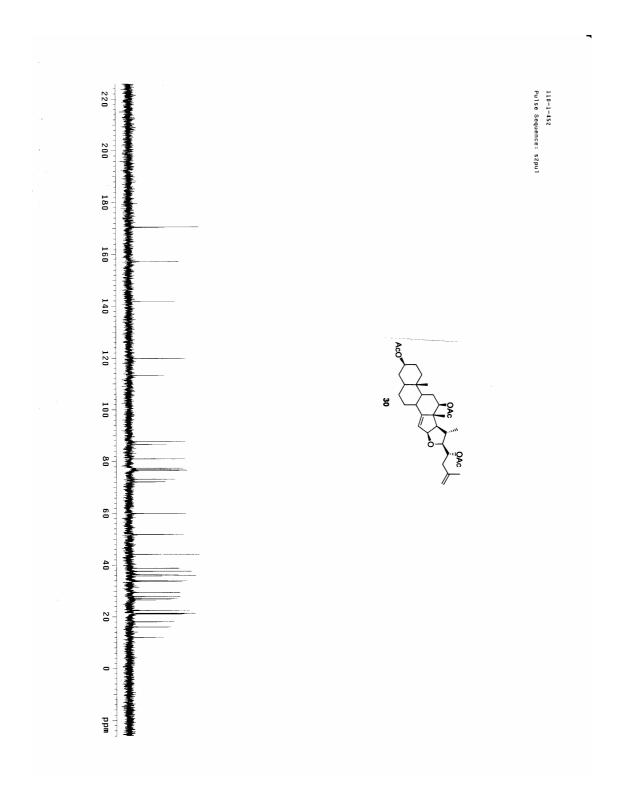


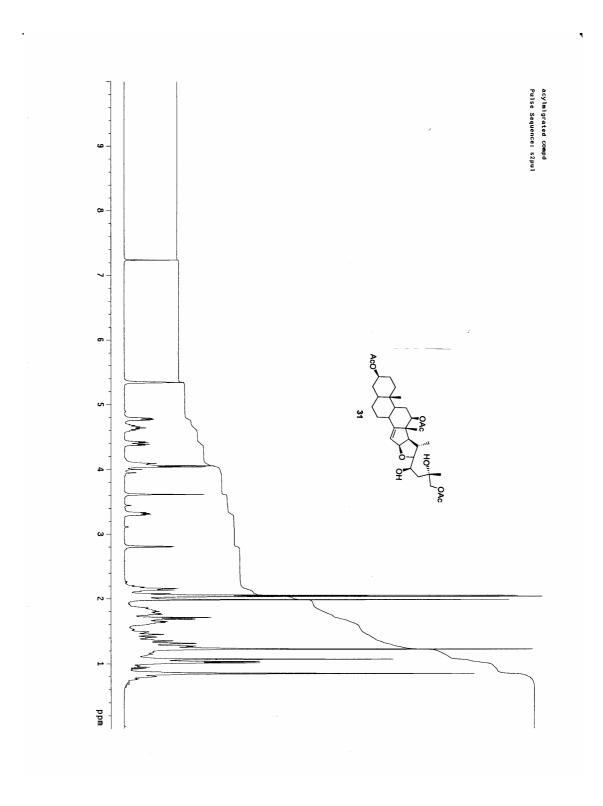


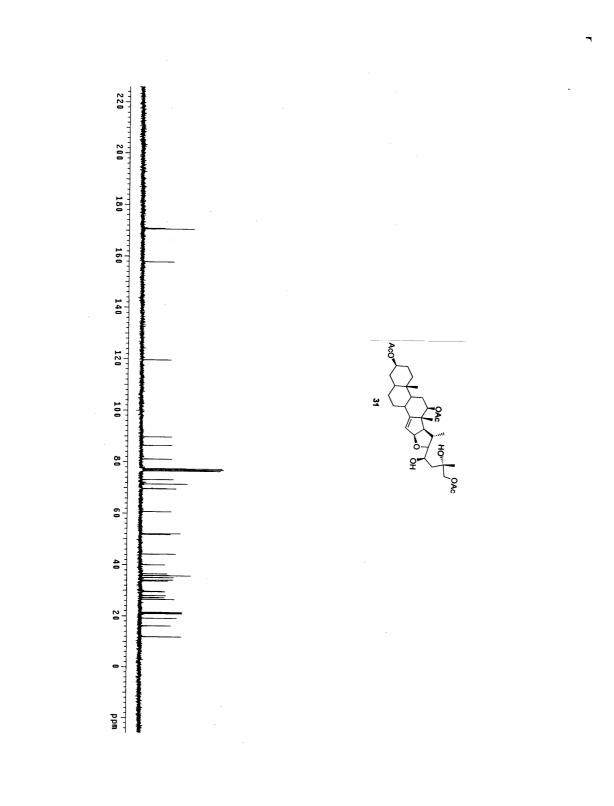




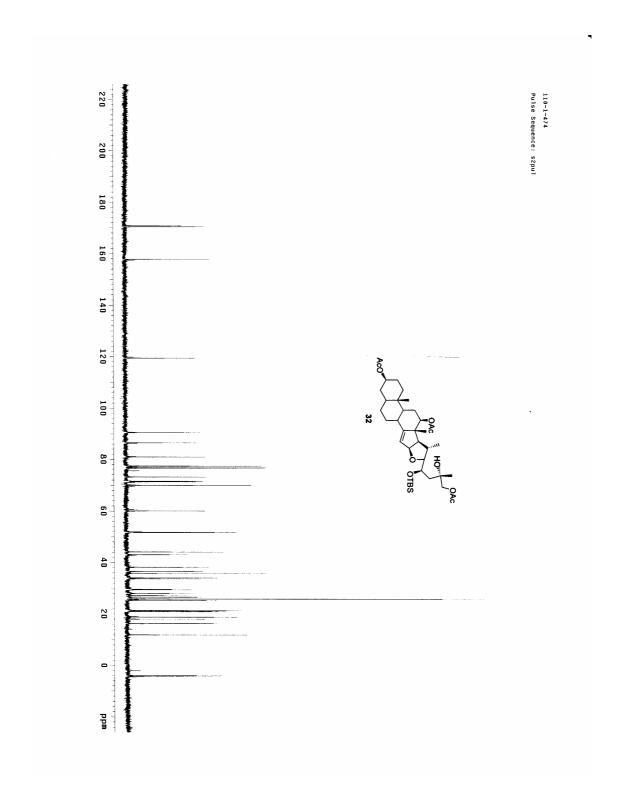




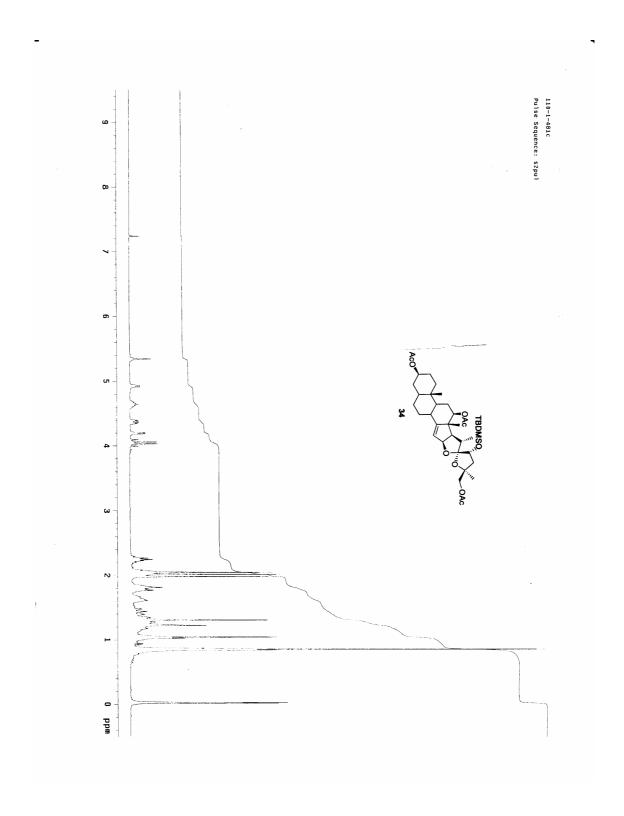


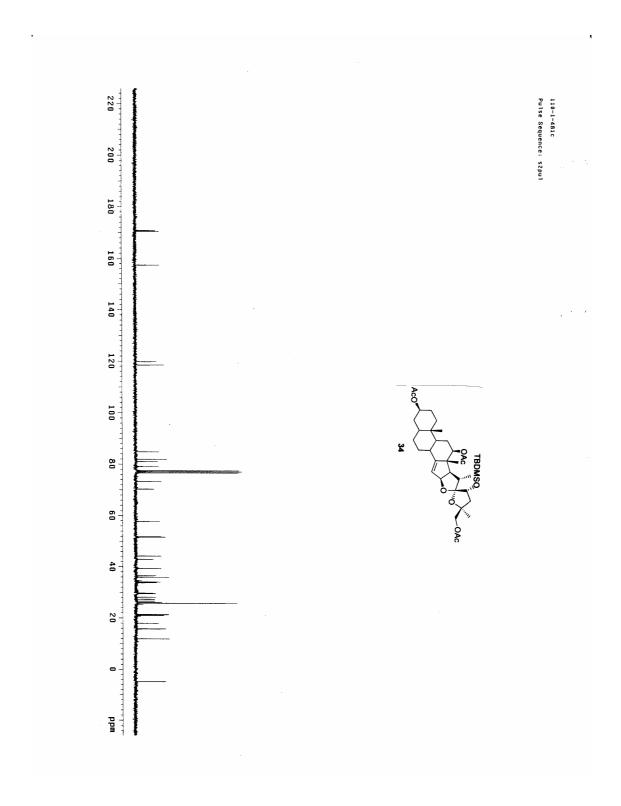


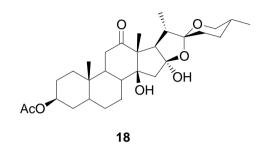


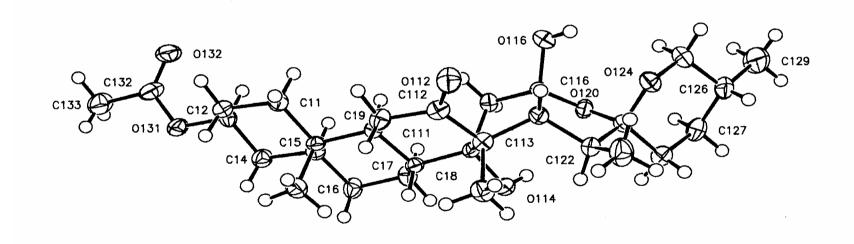


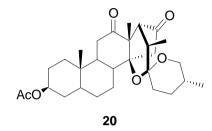


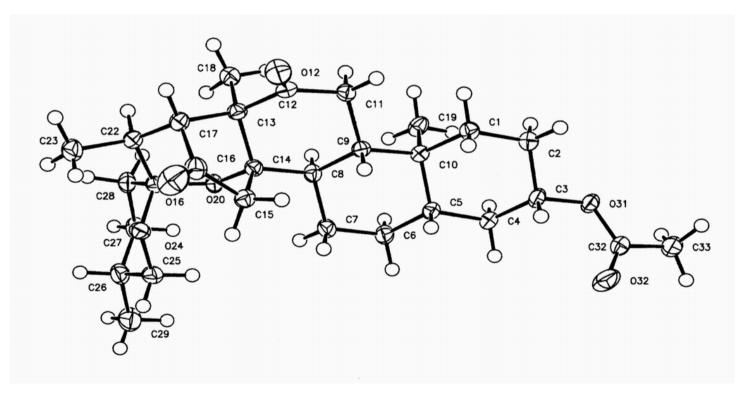


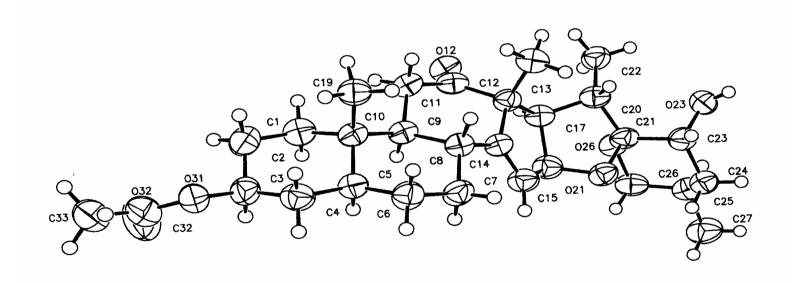









X-ray structure of diol 18



X-ray structure of isomeric spiroketal **20**

X-ray structure of compound 26

